Compositional Verification of Timed Systems
Saddek Bensalem*

Abstract

In this paper we address the state space explosion problem inherent to model-checking timed systems with a large number of components. The main challenge is to obtain pertinent global timing constraints from the timings in the components alone. To this end, we make use of auxiliary clocks to automatically generate new invariants which capture the constraints induced by the synchronisations between components. The method has been implemented as an extension of the D-Finder tool and successfully experimented on several benchmarks.

We addressed the problem of state-explosion inherent to model-checking of timed systems built from large number of components. Our solution consists in adapting the compositional verification approach of [BBSN08] to timed systems. The main challenge was to be able to capture the relations between the local timing of the components induced by their interactions. Without them the proposed compositional analysis proved to be too weak for verifying even simple systems. The proposed relations take the shape of equalities between the clocks of components used for expressing their timing constraints. We proved the soundness of the proposed approach, and successfully applied it to academic examples and non trivial case studies.

Compositional methods in verification have been developed to cope with state explosion. Generally based on divide-and-conquer principles, compositional methods attempt to break monolithic verification problems into smaller sub-problems by exploiting either the structure of the system or of the property to verify, or both. Compositional reasoning can be used in different flavors, e.g. deductive verification, assume-guarantee reasoning [MC81, Jon83, Pnu84], contract-based verification [DLL+12, LLH+12], compositional generation, etc. Nonetheless, compositional verification has not been very successfully applied to timed systems. The most used tools for the verification of such systems are based on symbolic state space exploration, using efficient data structures and exploration techniques. Few attempts have been made however for exploiting compositionality principles but they remain marginal in the research literature. Nowadays, it is generally admitted that the difficulty for using compositional reasoning is inherently due to the synchronous model of time. Time progress hides continuous synchronization of all the components of the system. Getting rid of such synchronization is necessary for analyzing independently different parts of the system (or of the property) but also extremely problematic when attempting to re-compose the partial verification results.

We proposed a different approach for exploiting compositionality for analysis of timed systems. We developed a novel compositional method for the generation of invariants for timed systems. In contrast to exact reachability analysis, invariants are symbolic approximations of the set of reachable states of the system. We show that quite precise invariants can be computed compositionally, from the separate analysis of the components in the system and from their composition glue. This method is sound for verification of safety properties, that is, if a given property can be deduced from the invariants computed for the system, then the system is guaranteed to satisfy that property. However, the method is not complete, that is, it may be not able to prove certain properties even if they are satisfied by the system.

Our Compositional Verification Method. The compositional method we propose here is based on the verification rule (VR) from [BBSN08]. Assume that a system consists of \(n \) components \(B_i \) interacting by means of an interaction set \(\gamma \), and that the system property of interest is \(\Phi \). If components \(B_i \), respectively interactions \(\gamma \), can be locally characterized by means of invariants \(CI(B_i) \), respectively \(II(\gamma) \), and if \(\Phi \) can

*This is joint work with L. Astefănoaei, S. Ben Rayana, M. Bozga, J. Combaz.
be proved to be a logical consequence of the conjunction of the local invariants, then Φ is a global invariant. This is what the rule below synthesizes.

\[\vdash \bigwedge_i CI(B_i) \land \Pi(\gamma) \rightarrow \Phi \]

\[\models_B \Phi \Rightarrow \Box \Phi \quad \text{(VR)} \]

In the rule (VR), the symbol \(\vdash \) is used to underline that the logical implication can be effectively proved (for instance with an SMT solver) and the notation \(B \models \Box \Phi \) is to be read as “\(\Phi \) holds in every reachable state of \(B \)”.

The key idea behind the compositional generation method is to use additional history clocks in order to track the timing of interactions between different components. History clocks allow to decouple the analysis for components and for their composition. On component level, history clocks are used to capture and expose the local timing constraints relevant to their interactions. At composition level, extra constraints on history clocks are enforced due to simultaneity of interactions and to the synchrony of time progress.

Timed Systems. In our framework, the components are timed automata [AD94] and systems are compositions of timed automata with respect to \(n \)-ary interactions. Timed automata represent the behavior of components. They have control locations and transitions between these locations. Transitions may have timing constraints, which are defined on clocks. Clocks can be reset and/or tested along with transition execution. Formally, a timed automaton is tuple \((L, l_0, A, T, X, \text{tpc}) \) where \(L \) is a finite set of control locations, \(l_0 \) is an initial control location, \(A \) a finite set of actions, \(X \) is a finite set of clocks, \(T \subseteq L \times (A \times C \times 2^X) \times L \) is finite set of transitions labeled with actions, guards, and a subset of clocks to be reset, and \(\text{tpc} : L \rightarrow C \) assigns a time progress condition\(^1\) to each location. \(C \) is the set of timing constraints which are predicates on the clocks \(X \) defined by the following grammar:

\[C :: \text{true} \mid \text{false} \mid x \# ct \mid x - y \# ct \mid C \land C \]

with \(x, y \in X, \# \in \{<, \leq, =, \geq, >\} \) and \(ct \in \mathbb{Z} \). Time progress conditions are restricted to conjunctions of constraints as \(x \leq ct \). For simplicity, we assume that at each location \(l \) the guards of the outgoing transitions imply the time progress condition \(\text{tpc}(l) \) of \(l \).

A timed automaton is a syntactic structure whose semantics is based on continuous and synchronous time progress. That is, a state is given by a control location paired with real-valued assignments of the clocks. From a given state, a timed automaton can let time progresses when permitted by the time progress condition of the corresponding location, or execute a (discrete) transition if its guard evaluates to true. The effect of time progress of \(\delta > 0 \) is to increase synchronously all the clocks by the real value \(\delta \). Executions of transitions are instantaneous, that is, they keep values of clocks unchanged except the ones that are reset (i.e. assigned to 0). Because of their continuous semantics, timed automata have in general infinite state spaces. However, they admit finite symbolic representations of their state spaces called zone graph [ACD+92, Ahu99, HNSY94, YPD94], in which equivalent assignments of clocks are grouped in a single (symbolic) state call zone having the shape of timing constraints defined previously. That is, the reachable states of a timed automaton corresponds to a finite number of configurations \((l_j, \zeta_j)\), \(1 \leq j \leq m \), where for all \(j, l_j \) is a control location and \(\zeta_j \) is a timing constraint.

Examples of timed automata are provided by Figure 1. For instance, components \(\text{Worker}_i, i \in \{1, 2\} \), are implemented by similar timed automata, consisting of two control locations \(l_1^i \) and \(l_2^i \) and two transitions: a transition from \(l_1^i \) to \(l_2^i \) labelled by action \(b_i \) and having timing constraint \(y \geq 8 \), and a transition from \(l_2^i \) to \(l_1^i \) having action \(d_i \) and resetting clock \(y \). By convention non displayed guards of transitions and time progress conditions of locations are true.

In our framework, components interact by means of strong synchronization between their actions. The synchronizations are specified in the so called interactions as sets of actions. An interaction can involve at

\(^1\)To avoid confusion with invariant properties, we prefer to adopt the terminology of “time progress condition” instead of “location invariants”.

2
most one action of each component. Given \(n \) components (i.e. timed automata) \(B_i = (L^i, l_0^i, A^i, T^i, X^i, tpc^i) \), \(1 \leq i \leq n \), and a set of interactions \(\gamma \), we denote by \(\gamma(B_1, \ldots, B_n) \) the composition of components \(B_i \) with respect to interactions \(\gamma \). States of the composition \(\gamma(B_1, \ldots, B_n) \) are combinations of the states of the components \(B_i \). In \(\gamma(B_1, \ldots, B_n) \), a component \(B_i \) can execute an action \(a_i \) only as part of an interaction \(\alpha \in \gamma \), \(a_i \in \alpha \), that is, along with the execution of all the actions participating to \(\alpha \), which corresponds to the usual notion of multi-party interaction. Notice that for a component \(B_i \) of a composition \(\gamma(B_1, \ldots, B_n) \), the application of interactions \(\gamma \) can only restrict its reachable states. That is, the reachable states of \(B_i \) when executed in the composition \(\gamma(B_1, \ldots, B_n) \) are included in the reachable states of \(B_i \) executed alone (i.e. as a single timed automata). This property is essential for building our compositional verification method, presented below.

Components and Interaction Invariants. To give a logical characterization of a system \(S = \gamma(B_1, \ldots, B_n) \) we use invariants. An invariant \(\Phi \) is a state property which holds in every reachable state of \(S \), in symbols, \(S \models \Box \Phi \).

Component invariants \(CI(B_i) \) characterize the reachable states of components \(B_i \) when considered alone. Such invariants can easily be computed from the zones of the corresponding timed automata. More precisely, given the reachable (symbolic) states \((l_j, \zeta_j) \), \(1 \leq j \leq m \), of component \(B_i \), the invariant for \(B_i \) is defined by:

\[
\bigvee_{1 \leq j \leq m} l_j \land \zeta_j,
\]

where we abuse of notation and use \(l_j \) for the predicate that holds whenever \(B_i \) is at location \(l_j \). Notice that zones \(\zeta_j \) are timing constraints, that is, predicates on clocks. Notice also that invariants \(CI(B_i) \) still hold for the composed system \(S = \gamma(B_1, \ldots, B_n) \), but are only over approximations of the states reached by each component \(B_i \) in \(S \). For example, the component invariants for **Controller**, **Worker_1** and **Worker_2** of Figure 1 are as follows:

\[
CI(\text{Controller}) = (l_{c_0} \land x \geq 0) \lor (l_{c_1} \land x \leq 4) \lor (l_{c_2} \land x \geq 0)
\]

\[
CI(\text{Worker}_i) = (l_{c_1} \land y_i \geq 0) \lor (l_{c_2} \land y_i \geq 8).
\]

Interaction invariants \(II(\gamma) \) are induced by the synchronizations and have the form of global conditions involving control locations of components. In previous work, we have considered boolean conditions [BBSN08] as well as linear constraints [SBL12] for \(II(\gamma) \). For instance, such invariants exclude configurations such that \(l_{c_1} \land l_{c_2} \), that is, they establish \(\neg(l_{c_1} \land (l_{c_2} \lor l_{c_2}^2)) \). Interaction invariants are not the main purpose of this work, interested readers should refer to [BBSN08] and [SBL12] for detailed presentations.

Figure 1: A composition of three timed automata.
A safety property of interest for example of Figure 1 is absence of deadlocks. A necessary condition for deadlock freedom is that \(a\) can synchronize with \(b_1\) or \(b_2\) when the controller is at \(lc_1\) and the workers are at \(l_1\), that is, \(\Phi = lc_1 \land l_1 \land l_1^2 \implies y_1 - x_1 \geq 4 \lor y_2 - x_1 \geq 4\). Even if \(\Phi\) holds in \(S\), it cannot be proved by applying \((\text{VR})\) using only component invariants \(CI(B_i)\) and interaction invariant \(II(\gamma)\). A counter example is given by \(lc_1 \land l_1 \land l_1^2\) and \(x = y_1 = y_2 = 0\), which satisfies the invariant \(CI(\text{Controller}) \land CI(\text{Worker}_1) \land CI(\text{Worker}_2) \land II(\gamma)^2\) but violate property \(\Phi\), that is, \(CI(\text{Controller}) \land CI(\text{Worker}_1) \land CI(\text{Worker}_2) \land II(\gamma) \nRightarrow \Phi\). One problem is that the proposed invariants cannot relate values of clocks of different components according to their synchronizations (e.g. synchronous resets of clocks).

Adding History Clocks. To strengthen computed invariants, we proposed to equip each component \(B_i\) (and later, interactions) with history clocks: one clock \(h_{a_i}\) per action of \(a_i\) of \(B_i\). A history clock \(h_{a_i}\) is reset on all transitions executing \(a_i\). Notice that since there is no timing constraint involving history clocks, the behavior of the components remain unchanged after the addition of the history clocks, which shown in [ARB+13]. They are only introduced for establishing properties. Each time an interaction \(\alpha \in \gamma\) is executed, all the history clocks corresponding to the actions participating in \(\alpha\) are reset synchronously, and then become identical at the next state (until another interaction is executed). Moreover, history clocks of the last executed interaction \(\alpha\) are necessarily lower than the ones of actions not participating in \(\alpha\), since they are the last being reset. This is captured by the following invariant:

\[
\mathcal{E}(\gamma) = \bigvee_{\alpha \in \gamma} \left(\left(\bigwedge_{a_i,a_j \in \alpha} \bigwedge_{a_k \not\in \alpha} h_{a_i} = h_{a_j} \leq h_{a_k} \right) \land \mathcal{E}(\gamma \ominus \alpha) \right),
\]

where \(\gamma \ominus \alpha = \{ \beta \setminus \alpha \mid \beta \in \gamma \land \beta \not\subseteq \alpha \}\). It can be shown that \(\mathcal{E}(\gamma)\) is an invariant of the system [ARB+13]. For example of Figure 1, invariant \(\mathcal{E}(\gamma)\) is given by:

\[
\mathcal{E}(\gamma) = (h_a = h_{b_1} \leq h_{b_2} \lor h_a = h_{b_2} \leq h_{b_1}) \land (h_c = h_{d_1} \leq h_{d_2} \lor h_c = h_{d_2} \leq h_{d_1}).
\]

Component invariants for example of Figure 1 including the history clocks are as follows:

\[
CI(\text{Controller}^h) = lc_0 \lor (lc_1 \land x \leq 4 \land (h_a = h_c \geq 8 + x \lor x = h_c \leq h_a)) \lor \\
(lc_2 \land x = h_a \land (h_c \geq h_a + 12 \lor h_c = h_a + 4))
\]

\[
CI(\text{Worker}_1^h) = (y = h_{d_1} \land l_1^1 \land h_{d_1} \leq h_{b_1}) \lor (l_1^2 \land h_{d_1} \geq 8 + h_{b_1}).
\]

Such invariants proved to be sufficient for stating deadlock-freedom for a similar example involving only one worker, but are too weak for establishing deadlock-freedom with two workers. When interactions are conflicting on shared action \(a_i\), the proposed invariants for history clock \(h_{a_i}\) always consider that any of these interactions can execute. For instance, in example of Figure 1 our invariants cannot capture the fact that if action \(a\) of Controller synchronizes with \(b_1\) of Worker_1, then the following execution of action \(c\) of Controller can only synchronize with \(d_1\) of Worker_1 (it cannot synchronize with \(d_2\) of Worker_2).

Handling Conflicting Interactions. We developed a general way for computing stronger invariants relating execution of the interactions. The principle is to add again history clocks \(h_{a_i}\) for each the interaction \(\alpha\) of \(\gamma\), and to reset \(h_{a_i}\) each time \(\alpha\) is executed by the means of an additional component and adequate synchronizations. A full description of this approach can be found in [ARB+13]. For an action \(a_i\) of component \(B_i\), we define the separation constraint \(S(\gamma, a_i)\) as:

\[
S(\gamma, a_i) = \bigwedge_{\alpha,\beta \in \gamma \mid a_i \in \alpha, \beta \neq \alpha} \left(h_{\alpha} - h_{\beta} \geq \delta_{a_i} \right).
\]

\(^2\)Notice that interaction invariants cannot exclude \(lc_1 \land l_1^1 \land l_1^2\) since it is a reachable configuration.
where $\delta_{a_{i}}$ is a lower bound of the time elapsed between two consecutive executions of a_{i} in B_{i}, which can be statically computed from the timed automata of B_{i}. It can be shown [ARB$^{+}$13] that separation constraints $S(\gamma, a_{i})$ are invariants of the system, that is, the following is an invariant of the system:

$$S(\gamma) = \bigwedge_{1 \leq i \leq n} \bigwedge_{a_{i} \in A_{i}} S(\gamma, a_{i}).$$

Invariant $E(\gamma)$ can be rewritten using additional history clocks as follows:

$$E(\gamma) = \bigwedge_{1 \leq i \leq n} \bigwedge_{a_{i} \in A_{i}} h_{a_{i}} = \min_{\alpha \ni a_{i}} h_{\alpha}.$$

This corresponds to the intuition that the history clock of an action a_{i} equals the history clock of the last executed interaction α involving a_{i}, which is the one having h_{α} minimal.

Experimental Results. We have developed a prototype in Scala implementing the approach. It takes as input components B_{i}, interactions γ, and a global safety property Φ, and checks whether the system satisfy Φ. To this end, it first computes the invariants proposed above, using PPL3. Then it generates Z34 Python code to check the satisfiability of the following formula:

$$\bigwedge_{1 \leq i \leq n} CI(B_{i}) \land II(\gamma) \land E(\gamma) \land S(\gamma) \land \neg\Phi.$$ (1)

Notice that when γ has no conflicting interactions we can simply use the initial form for $E(\gamma)$ and discard $S(\gamma)$. If (1) is not satisfiable then the system is guaranteed to satisfy Φ (i.e. our approach is sound). Otherwise, Z3 returns an assignment of the variables satisfying (1) and corresponding to a global state of the system that violates property Φ. Since we use over-approximations (i.e. invariants) instead of the exact behavior of the system, this state may be not reachable and Φ may actually hold in the system.

We experimented the approach on several classical examples, namely the *Train-Gate-Controller (TGC)*, the *Fischer* mutual exclusion protocol, and the *Temperature-Control-System (TCS)*. We compared our prototype implementation with Uppaal5. Uppaal is a widely used model-checker for timed systems implementing symbolic reachability of parallel composition of timed automata using zones. We measured execution times for verifying properties of interest for these examples, i.e. mutual exclusion for *TGC* and *Fischer* and deadlock-freedom for *TCS* (see Table 1). Experimental results shown that Uppaal is subject to state-explosion when increasing the number of components, which happened with *TCS* for 16 components or more, and with *Fischer* for 14 components or more. In contrast, our prototype managed to verify *TCS* even for 124 components in less than 20 seconds. We believe that such compositional approach is very interesting for systems composed of large number of identical components (e.g. swarms of robots) since in this case we reuse already computed invariants following incremental approaches of [BGL$^{+}$11].

Conclusion. We have presented a compositional verification method for systems subject to timing constraints. It relies on invariants computed separately from system components and their interactions. This method is sound for verification of safety properties, that is, it can be used to prove that the system cannot reach an undesirable configuration. We believe that it is suited to check correctness of coordinations within distributed systems, usually implemented by communication protocols relying on time. Its applicability has already been considered in an European project for an ensemble of robots and devices coordinating in real-time to build consistent knowledge and to achieve safe behavior.

3bugseng.com/products/ppl
4research.microsoft.com/en-us/um/redmond/projects/z3
5www.uppaal.org
<table>
<thead>
<tr>
<th>Model & Property</th>
<th>Size</th>
<th>Our prototype</th>
<th>Uppaal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Train Gate Controller & mutual exclusion</td>
<td>1</td>
<td>0m0.156s/2.6kB+140B</td>
<td>0ms/8 states</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>0m0.176s/3.2kB+350B</td>
<td>0ms/13 states</td>
</tr>
<tr>
<td></td>
<td>64</td>
<td>0m4.82s/530kB+170kB</td>
<td>0m0.210s/323 states</td>
</tr>
<tr>
<td></td>
<td>124</td>
<td>0m17.718s/700kB+640kB</td>
<td>0m1.52s/623 states</td>
</tr>
<tr>
<td>Fischer & mutual exclusion</td>
<td>2</td>
<td>0m0.144/3kB</td>
<td>0m0.008s/14 states</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>0m0.22s/6.5kB</td>
<td>0m0.012s/156 states</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>0m0.36s/12.5kB</td>
<td>0m0.03s/1714 states</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>0m2.840s/112kB</td>
<td>no result in 4 hours</td>
</tr>
<tr>
<td>Temperature Controller & absence of deadlock</td>
<td>1</td>
<td>0m0.172s/840B+60B</td>
<td>0m0.01s/4 states</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>0m0.5s/23kB+2.4kB</td>
<td>11m0.348s/57922 states</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>0m2.132s/127kB+9kB</td>
<td>no result in 6 hours</td>
</tr>
<tr>
<td></td>
<td>124</td>
<td>0m19.22s/460kB+510kB</td>
<td>no result in 6 hours</td>
</tr>
</tbody>
</table>

Table 1: Experimental results for model-checking tool Uppaal and our prototype tool.

References

